SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst.(1973). B29, 154.

Acta Cryst. (1975). B31, 2683

Dichlorobis-(4-methylpyridine)cobalt(II)

By Michael Laing and George Carr
Department of Chemistry, University of Natal, Durban, South Africa

(Received 17 May 1975; accepted 21 May 1975)

Abstract. $\mathrm{CoCl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{4} \cdot \mathrm{CH}_{3}\right)_{2}$, monoclinic, $P 2_{1} / n, a=$ 5.70 (1), $b=10 \cdot 16$ (1), $c=24.36$ (2) $\AA, \beta=92.4$ (1) ${ }^{\circ}$, $Z=4, D_{c}=1.49 \mathrm{~g} \mathrm{~cm}^{-3} . \mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}=121, \mathrm{~N}-\mathrm{Co}-\mathrm{N}=$ 107°; Co is tetrahedrally coordinated. The molecular packing differs from that of the ZnCl_{2} and ZnBr_{2} analogues.

Introduction. Previous work (Gill, Nyholm, Barclay, Christie \& Pauling, 1961; Graddon \& Watson, 1965) has shown that in the crystalline state 4 -substitutedpyridine complexes of $\mathrm{CoCl}_{2},\left[\mathrm{CoCl}_{2}(4-\mathrm{Rpy})_{2}\right]$, can exist either as molecules with Co tetrahedrally coordinated or as polymeric CoCl_{2} chains with Co in a pseudooctahedral environment. In several cases, the tetrahedrally coordinated compounds are isostructural with the analogous ZnCl_{2} compounds (Admiraal \& Gafner, 1968; Erasmus, 1967), while the structure of the polymeric pseudo-octahedral form is closely related to that of the analogous complex of CuCl_{2} (Dunitz, 1957; Laing \& Horsfield, 1968, 1969).

It seemed that the stereochemistry of the CoCl_{2} compounds was dictated solely by the size and shape of the 4 -substituent on the pyridine ring, so a series of 4 -substituted pyridine complexes of CoCl_{2} and CuCl_{2} was prepared to test this proposition (Carr, 1970). Under certain conditions it was possible to prepare the 4-methylpyridine complex of CoCl_{2} in the violet pseudo-octahedral form, but within hours the material changed to the blue tetrahedral form whose structure is reported here.

Fig. 1. The numbering system and selected bond distances and angles.
CoCl_{2} (4-methylpyridine) ${ }_{2}$ forms deep-blue needles from ethanol, monoclinic, space group $P 2_{1} / n$ uniquely determined from the systematic absences. Data were collected with Ni -filtered $\mathrm{Cu} K \alpha$ radiation by the mul-tiple-film equi-inclination Weissenberg method for layers $0 k l$ to $4 k l$. The Co and Cl atoms were located from a Patterson map and the lighter atoms from the subsequent Fourier map. The H atoms were clearly defined in a difference map; they were therefore included in the structure-factor calculations but their parameters

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and anisotropic thermal parameters $\left(\times 10^{4}\right)$

Estimated standard deviations are in parentheses. The expression for the thermal parameters is $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}\right.\right.$ $\left.\left.+h k \beta_{12}+h l \beta_{13}+k l \beta_{23}\right)\right]$.

	x / a	y / b	z / c
Co	4401 (4)	1856 (2)	1115 (1)
$\mathrm{Cl}(1)$	5676 (7)	-205 (3)	1010 (1)
$\mathrm{Cl}(2)$	6899 (6)	3520 (3)	1263 (1)
$\mathrm{N}(1)$	2252 (17)	1825 (10)	1778 (4)
$\mathrm{N}(2)$	2361 (17)	2325 (10)	438 (4)
C(1)	852 (22)	797 (12)	1847 (5)
C(2)	-790 (23)	737 (13)	2256 (5)
C(3)	-828 (21)	1807 (13)	2625 (5)
C(4)	643 (22)	2890 (13)	2528 (5)
C(5)	2171 (25)	2871 (13)	2110 (5)
C(6)	-2527 (24)	1848 (13)	3068 (5)
C(7)	481 (20)	1713 (13)	322 (5)
C(8)	-1088 (23)	1996 (15)	-129 (5)
C(9)	-570 (22)	3065 (14)	-462 (5)
C(10)	1560 (23)	3739 (14)	-332 (5)
C(11)	2951 (24)	3322 (15)	108 (5)
$\mathrm{C}(12)$	-2094 (26)	3469 (16)	-938 (5)

Fractional coordinates $\left(\times 10^{3}\right.$) of the H atoms ($B=4.0 \AA^{2}$)

	x / z	y / b	z / c
$\mathrm{H}(1)$	100	4	159
$\mathrm{H}(2)$	-193	-7	230
$\mathrm{H}(4)$	60	369	277
$\mathrm{H}(5)$	329	364	205
$\mathrm{H}(7)$	-4	90	57
$\mathrm{H}(8)$	-254	146	-22
$\mathrm{H}(10)$	192	451	-57
$\mathrm{H}(11)$	428	387	22
$\mathrm{H}(6 \cdot 1)$	-350	270	310
$\mathrm{H}(6 \cdot 2)$	-190	160	340
$\mathrm{H}(6 \cdot 3)$	-390	120	290
$\mathrm{H}(12 \cdot 1)$	-370	380	-80
$\mathrm{H}(12 \cdot 2)$	-120	410	-120
$\mathrm{H}(12 \cdot 3)$	-240	260	-120

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Co	$345(8)$	$90(2)$	$15(0)$	$-34(8)$	$7(2)$	$5((2)$
$\mathrm{Cl}(1)$	$404(15)$	$67(3)$	$18(1)$	$22(12)$	$11(5)$	$1(3)$
$\mathrm{Cl}(2)$	$365(14)$	$75(4)$	$17(1)$	$-106(12)$	$-19(5)$	$18(3)$
$\mathrm{N}(1)$	$272(42)$	$63(10)$	$13(2)$	$-56(37)$	$-27(13)$	$11(8)$
$\mathrm{N}(2)$	$208(40)$	$78(12)$	$12(2)$	$-69(34)$	$-21(13)$	$-4(7)$
$\mathrm{C}(1)$	$131(53)$	$47(12)$	$23(3)$	$-7(37)$	$-26(19)$	$15(10)$
$\mathrm{C}(2)$	$196(53)$	$102(16)$	$18(3)$	$-71(43)$	$76(19)$	$-53(11)$
$\mathrm{C}(3)$	$217(49)$	$83(15)$	$16(2)$	$19(45)$	$-29(16)$	$34(11)$
$\mathrm{C}(4)$	$393(66)$	$59(16)$	$19(3)$	$79(49)$	$-30(21)$	$-22(10)$
$\mathrm{C}(5)$	$297(53)$	$92(16)$	$8(2)$	$-8(47)$	$9(16)$	$-23(9)$
$\mathrm{C}(6)$	$459(63)$	$67(14)$	$10(2)$	$42(52)$	$17(17)$	$43(10)$
$\mathrm{C}(7)$	$164(49)$	$72(14)$	$16(2)$	$44(42)$	$4(16)$	$-13(10)$
$\mathrm{C}(8)$	$276(54)$	$118(18)$	$14(2)$	$-1(54)$	$12(17)$	$13(12)$
$\mathrm{C}(9)$	$309(56)$	$111(18)$	$9(2)$	$90(51)$	$69(17)$	$-19(11)$
$\mathrm{C}(10)$	$279(61)$	$118(19)$	$11(3)$	$-50(56)$	$1(18)$	$9(12)$
$\mathrm{C}(11)$	$339(54)$	$130(16)$	$13(2)$	$14(53)$	$34(16)$	$10(11)$
$\mathrm{C}(12)$	$404(62)$	$159(24)$	$7(2)$	$7(65)$	$-11(18)$	$4(12)$

were not refined. The structure was refined anisotropically by block-diagonal least-squares calculations to $R=0.086$ for 1148 observed data.* All calculations were performed with a local set of programs (Laing, 1972). The atomic parameters are given in Table 1; the numbering system and some bond lengths and angles are shown in Fig. 1.

Discussion. Co is tetrahedrally coordinated; the bond lengths and angles in the molecule are normal within the observed standard deviations. The seven atoms of each of the 4-methylpyridine systems are coplanar within $0.02 \AA$; however in both cases Co is $0.11 \AA$ from the mean plane of the pyridine ring. There is no obvious reason for this displacement but it is possibly due to the intramolecular repulsion between $\mathrm{C}(1)$ and $\mathrm{C}(7)$ combined with intermolecular crystal packing effects (Kitaigorodsky, 1974). A similar but larger distortion has been observed in the compound dibromo-($N, N, N^{\prime}, N^{\prime}$ tetramethylpyridinedicarboxamide)cobalt(II) (Du Preez, van Brecht \& Laing, 1975).

Although the molecules $\alpha-\left[\mathrm{CoCl}_{2}(4-\mathrm{Vpy})_{2}\right]$ and both α - and $\beta-\left[\mathrm{ZnCl}_{2}(4-\mathrm{Vpy})_{2}\right]$ retain a twofold axis of symmetry in the crystal (Admiraal \& Gafner, 1968: Erasmus, 1967), $\left[\mathrm{CoCl}_{2}(4-\mathrm{Mepy})_{2}\right]$ does not. Also, the mode of packing differs from that of the geometrically similar compound $\left[\mathrm{ZnBr}_{2}(4-\mathrm{Mepy})_{2}\right]$ (Fanfani, Nunzi \&

[^0]Zanazzi, 1972). The balance between enthalpy and entropy effects is not clear (Kitaigorodskii, 1961), and for this reason a study is being made of the factors which control the mode of packing in molecules of the general formula $\left[\mathrm{MCl}_{2}(4 \mathrm{R}-\mathrm{py})_{2}\right]$ where M is tetrahedrally coordinated. Preliminary work shows that $\left[\mathrm{ZnCl}_{2}(4-\mathrm{Mepy})_{2}\right]$ is isostructural with the ZnBr_{2} analogue.

We thank the South African Council for Scientific and Industrial Research for generous financial support.

References

Admiraal, L. J. \& Gafner, G. (1968). Chem. Commun. pp. 1221-1222.
Carr, G. (1970). M. Sc. Thesis, Univ. of Natal.
Dunitz, J. D. (1957). Acta Cryst. 10, 307-313.
Du Preez, J. G. H., van Brecht, B. \& Laing, M. (1975). J. S. Afr. Chem. Inst. In the press.

Erasmus, C. S. (1967). M. Sc. Thesis, Potchefstroom Univ. Fanfani, L., Nunzi, A. \& Zanazzi, P. F. (1972). Acta Cryst. B28, 323-325.
Gill, N. S., Nyholm, R. S., Barclay, G. A., Christie, T. I. \& Pauling, P. J. (1961). J. Inorg. Nucl. Chem. 18, 88-97.
Graddon, D. P. \& Watson, E. C. (1965). Aust. J. Chem. 18, 507-520.
Kitaigorodskit, A. I. (1961). Organic Chemical Crystallography, pp. 96, 109, 169. New York: Consultants Bureau.
Kitaigorodsky, A. I. (1974). Molecular Crystals and Molecules, p. 188. New York: Academic Press.
Laing, M. (1972). Acta Cryst. B28, 986.
Laing, M. \& Horsfield, E. (1968). Chem. Commun. p. 735.
laing, M. \& Horsfield, E. (1969). Chem. Commun. pp. 902-903.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31138 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

